# All-at-once optimization for CP tensor decomposition (with Poblano)

We explain how to use cp_opt with the Poblano toolbox. The default is to use L-BFGS-B (not Poblabo), which is described here.

## Poblano Optimization Toolbox

Check that you have Poblano 1.1 installed. The output of your 'ver' command should look something like the following.

```ver
```
```----------------------------------------------------------------------------------------------------
MATLAB Version: 9.2.0.556344 (R2017a)
Operating System: Microsoft Windows 10 Enterprise Version 10.0 (Build 14393)
Java Version: Java 1.7.0_60-b19 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode
----------------------------------------------------------------------------------------------------
MATLAB                                                Version 9.2         (R2017a)
Parallel Computing Toolbox                            Version 6.10        (R2017a)
Poblano Toolbox (Sandia National Labs)                Version 1.1
Statistics and Machine Learning Toolbox               Version 11.1        (R2017a)
Tensor Toolbox (Sandia National Labs)                 Version 3.0-dev
```

## Create an example problem.

Create an example 50 x 40 x 30 tensor with rank 5 and add 10% noise.

```R = 5;
info = create_problem('Size', [50 40 30], 'Num_Factors', R, 'Noise', 0.10);
X = info.Data;
M_true = info.Soln;
```

## Create initial guess using 'nvecs'

```M_init = create_guess('Data', X, 'Num_Factors', R, ...
'Factor_Generator', 'nvecs');
```

## Set up the optimization parameters

It's genearlly a good idea to consider the parameters of the optimization method. The default options may be either too stringent or not stringent enough. The most important options to consider are detailed here.

```% Get the defaults
ncg_opts = ncg('defaults');
% Tighten the stop tolerance (norm of gradient). This is often too large.
ncg_opts.StopTol = 1.0e-6;
% Tighten relative change in function value tolearnce. This is often too large.
ncg_opts.RelFuncTol = 1.0e-20;
% Increase the number of iterations.
ncg_opts.MaxIters = 10^4;
% Only display every 10th iteration
ncg_opts.DisplayIters = 10;
% Display the final set of options
ncg_opts
```
```ncg_opts =

struct with fields:

Display: 'iter'
DisplayIters: 10
LineSearch_ftol: 1.0000e-04
LineSearch_gtol: 0.0100
LineSearch_initialstep: 1
LineSearch_maxfev: 20
LineSearch_method: 'more-thuente'
LineSearch_stpmax: 1.0000e+15
LineSearch_stpmin: 1.0000e-15
LineSearch_xtol: 1.0000e-15
MaxFuncEvals: 10000
MaxIters: 10000
RelFuncTol: 1.0000e-20
RestartIters: 20
RestartNW: 0
RestartNWTol: 0.1000
StopTol: 1.0000e-06
TraceFunc: 0
TraceFuncEvals: 0
TraceRelFunc: 0
TraceX: 0
Update: 'PR'

```

## Call the cp_opt method

Here is an example call to the cp_opt method. By default, each iteration prints the least squares fit function value (being minimized) and the norm of the gradient. The meaning of any line search warnings can be checked via doc cvsrch.

```[M,~,output] = cp_opt(X, R, 'init', M_init, ...
'opt', 'ncg', 'opt_options', ncg_opts);
```
``` Iter  FuncEvals       F(X)          ||G(X)||/N
------ --------- ---------------- ----------------
0         1   28323.90709757       0.49199185
10        73     318.63828960       0.34043521
20       126     276.86091334       0.02452650
30       164     276.07707790       0.00756378
40       196     275.99604005       0.00081675
50       216     275.99505143       0.00011444
60       236     275.99503708       0.00003744
70       256     275.99503597       0.00001239
80       276     275.99503582       0.00000121
81       278     275.99503582       0.00000072
```

## Check the output

It's important to check the output of the optimization method. In particular, it's worthwhile to check the exit flag. A zero (0) indicates successful termination with the gradient smaller than the specified StopTol, and a three (3) indicates a successful termination where the change in function value is less than RelFuncTol. The meaning of any other flags can be checked via doc poblano_params.

```exitflag = output.ExitFlag
```
```exitflag =

0

```

The fit is the percentage of the data that is explained by the model. Because we have noise, we do not expect the fit to be perfect.

```fit = output.Fit
```
```fit =

99.0205

```

## Evaluate the output

We can "score" the similarity of the model computed by CP and compare that with the truth. The score function on ktensor's gives a score in [0,1] with 1 indicating a perfect match. Because we have noise, we do not expect the fit to be perfect. See doc score for more details.

```scr = score(M,M_true)
```
```scr =

0.9960

```

## Overfitting example

Consider the case where we don't know R in advance. We might guess too high. Here we show a case where we guess R+1 factors rather than R.

```% Generate initial guess of the corret size
M_plus_init = create_guess('Data', X, 'Num_Factors', R+1, ...
'Factor_Generator', 'nvecs');
```
```% Loosen the stop tolerance (norm of gradient).
ncg_opts.StopTol = 1.0e-2;
```
```% Run the algorithm
[M_plus,~,output] = cp_opt(X, R+1, 'init', M_plus_init, ...
'opt', 'ncg', 'opt_options', ncg_opts);
exitflag = output.ExitFlag
fit = output.Fit
```
``` Iter  FuncEvals       F(X)          ||G(X)||/N
------ --------- ---------------- ----------------
0         1   28324.22221703       0.41000218
10        73     318.70871296       0.28371386
20       126     276.85068977       0.02067054
28       158     276.04553324       0.00988816

exitflag =

0

fit =

99.0203

```
```% Check the answer (1 is perfect)
scr = score(M_plus, M_true)
```
```scr =

0.9926

```